31 research outputs found

    HIV-1 Vpr suppresses expression of the thiazide-sensitive sodium chloride co-transporter in the distal convoluted tubule

    No full text
    HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice

    Profiling of renal tubule Na+ transporter abundances in NHE3 and NCC null mice using targeted proteomics

    No full text
    The Na+–H+ exchanger NHE3 and the thiazide-sensitive Na+–Cl− cotransporter NCC are the major apical sodium transporters in the proximal convoluted tubule and the distal convoluted tubule of the kidney, respectively. We investigated the mechanism of compensation that allows maintenance of sodium balance in NHE3 knockout mice and in NCC knockout mice.We used a so-called ‘targeted proteomics’ approach, which profiles the entire renal tubule with regard to changes in Na+ transporter and aquaporin abundance in response to the gene deletions. Specific antibodies to the Na+ transporters and aquaporins expressed along the nephron were utilized to determine the relative abundance of each transporter. Semiquantitative immunoblotting was used which gives an estimate of the percentage change in abundance of each transporter in knockout compared with wild-type mice.In NHE3 knockout mice three changes were identified which could compensate for the loss of NHE3-mediated sodium absorption. (a) The proximal sodium-phosphate cotransporter NaPi-2 was markedly upregulated. (b) In the collecting duct, the 70 kDa form of the γ-subunit of the epithelial sodium channel, ENaC, exhibited an increase in abundance. This is thought to be an aldosterone-stimulated form of γ-ENaC. (c) Glomerular filtration was significantly reduced.In the NCC knockout mice, amongst all the sodium transporters expressed along the renal tubule, only the 70 kDa form of the γ-subunit of the epithelial sodium channel, ENaC, exhibited an increase in abundance.In conclusion, both mouse knockout models demonstrated successful compensation for loss of the deleted transporter. More extensive adaptation occurred in the case of the NHE3 knockout, presumably because NHE3 is responsible for much more sodium absorption in normal mice than in NCC knockout mice
    corecore